Implement linear regression

This commit is contained in:
Sik Yoon 2024-06-06 02:19:03 +09:00
parent 3990205979
commit 0ba0d3702d
3 changed files with 82 additions and 0 deletions

View File

@ -37,6 +37,7 @@ use crate::value_estimation_team::indicators::tema::{tema, TemaData};
use crate::value_estimation_team::indicators::wiliams_percent_r::{
wiliams_percent_r, WiliamsPercentR,
};
use crate::value_estimation_team::indicators::linear_regression::{LrData, linear_regression};
use crate::future::Position;
use futures::future::try_join_all;
use reqwest::{Client, ClientBuilder};

View File

@ -0,0 +1,80 @@
#![allow(unused)]
#![allow(warnings)]
use super::HashMap;
use crate::database_control::*;
use crate::strategy_team::FilteredDataValue;
use crate::value_estimation_team::datapoints::price_data::RealtimePriceData;
use futures::future::try_join_all;
use serde::Deserialize;
use sqlx::FromRow;
use std::sync::Arc;
use tokio::{fs::*, io::AsyncWriteExt, sync::Mutex, time::*};
#[derive(Clone, Debug)]
pub struct LrData {
pub lr_value: f64, // linear regression value
pub close_time: i64,
}
impl LrData {
fn new() -> LrData {
let a = LrData {
lr_value: 0.0,
close_time: 0,
};
a
}
}
// Binance MA (closeprice)
pub async fn linear_regression(
length: usize,
offset: usize,
input_rt_data: &HashMap<String, Vec<RealtimePriceData>>,
filtered_symbols: &HashMap<String, FilteredDataValue>,
) -> Result<HashMap<String, Vec<LrData>>, Box<dyn std::error::Error + Send + Sync>> {
if filtered_symbols.is_empty() {
Err("Err")?;
}
let mut lr_data_wrapper: HashMap<String, Vec<LrData>> = HashMap::new();
let mut lr_data_wrapper_arc = Arc::new(Mutex::new(lr_data_wrapper));
let mut task_vec = Vec::new();
for (symbol, filtered_data) in filtered_symbols {
if let Some(vec) = input_rt_data.get(symbol) {
let lr_data_wrapper_arc_c = Arc::clone(&lr_data_wrapper_arc);
let symbol_c = symbol.clone();
let rt_price_data = vec.clone();
if rt_price_data.len() >= length {
task_vec.push(tokio::spawn(async move {
// Calculate prediction of linear regression
let mut lr_data_vec: Vec<LrData> = Vec::new();
for window in rt_price_data.windows(length) {
let mut lr_data = LrData::new();
let x: Vec<f64> = (0..length).map(|x| x as f64).collect();
let y: Vec<f64> = window.iter().map(|x| x.close_price).collect();
let x_mean: f64 = x.iter().sum::<f64>() / x.len() as f64;
let y_mean: f64 = y.iter().sum::<f64>() / y.len() as f64;
let numerator: f64 = x.iter().zip(y.iter()).map(|(x_i, y_i)| (x_i - x_mean) * (y_i - y_mean)).sum();
let denominator: f64 = x.iter().map(|x_i| (x_i - x_mean).powi(2)).sum();
let slope = numerator / denominator;
let intercept = y_mean - slope * x_mean;
let linreg = intercept + slope * (length as f64 - 1.0 - offset as f64);
lr_data.lr_value = linreg;
lr_data.close_time = window.last().unwrap().close_time;
lr_data_vec.push(lr_data.clone());
}
}));
}
}
}
try_join_all(task_vec).await?;
let a = lr_data_wrapper_arc.lock().await.to_owned();
Ok(a)
}

View File

@ -10,6 +10,7 @@ pub mod stoch_rsi;
pub mod supertrend;
pub mod tema;
pub mod wiliams_percent_r;
pub mod linear_regression;
use crate::strategy_team::FilteredDataValue;
use crate::value_estimation_team::datapoints::price_data::RealtimePriceData;