84 lines
3.2 KiB
Rust
84 lines
3.2 KiB
Rust
#![allow(unused)]
|
|
#![allow(warnings)]
|
|
|
|
use super::HashMap;
|
|
use crate::database_control::*;
|
|
use crate::strategy_team::FilteredDataValue;
|
|
use crate::value_estimation_team::datapoints::price_data::RealtimePriceData;
|
|
use futures::future::try_join_all;
|
|
use serde::Deserialize;
|
|
use sqlx::FromRow;
|
|
use std::sync::Arc;
|
|
use tokio::{fs::*, io::AsyncWriteExt, sync::Mutex, time::*};
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct LrData {
|
|
pub lr_value: f64, // linear regression value
|
|
pub close_time: i64,
|
|
}
|
|
impl LrData {
|
|
fn new() -> LrData {
|
|
let a = LrData {
|
|
lr_value: 0.0,
|
|
close_time: 0,
|
|
};
|
|
a
|
|
}
|
|
}
|
|
|
|
// Binance MA (closeprice)
|
|
pub async fn linear_regression(
|
|
length: usize,
|
|
offset: usize,
|
|
input_rt_data: &HashMap<String, Vec<RealtimePriceData>>,
|
|
filtered_symbols: &HashMap<String, FilteredDataValue>,
|
|
) -> Result<HashMap<String, Vec<LrData>>, Box<dyn std::error::Error + Send + Sync>> {
|
|
if filtered_symbols.is_empty() {
|
|
Err("Err")?;
|
|
}
|
|
|
|
let mut lr_data_wrapper: HashMap<String, Vec<LrData>> = HashMap::new();
|
|
let mut lr_data_wrapper_arc = Arc::new(Mutex::new(lr_data_wrapper));
|
|
|
|
let mut task_vec = Vec::new();
|
|
for (symbol, filtered_data) in filtered_symbols {
|
|
if let Some(vec) = input_rt_data.get(symbol) {
|
|
let lr_data_wrapper_arc_c = Arc::clone(&lr_data_wrapper_arc);
|
|
let symbol_c = symbol.clone();
|
|
|
|
if vec.len() >= length {
|
|
let rt_price_data = vec.clone();
|
|
task_vec.push(tokio::spawn(async move {
|
|
// Calculate prediction of linear regression
|
|
let mut lr_data_vec: Vec<LrData> = Vec::new();
|
|
|
|
for window in rt_price_data.windows(length) {
|
|
let mut lr_data = LrData::new();
|
|
let x: Vec<f64> = (0..length).map(|x| x as f64).collect();
|
|
let y: Vec<f64> = window.iter().map(|x| x.close_price).collect();
|
|
|
|
let x_mean: f64 = x.iter().sum::<f64>() / x.len() as f64;
|
|
let y_mean: f64 = y.iter().sum::<f64>() / y.len() as f64;
|
|
|
|
let numerator: f64 = x.iter().zip(y.iter()).map(|(x_i, y_i)| (x_i - x_mean) * (y_i - y_mean)).sum();
|
|
let denominator: f64 = x.iter().map(|x_i| (x_i - x_mean).powi(2)).sum();
|
|
|
|
let slope = numerator / denominator;
|
|
let intercept = y_mean - slope * x_mean;
|
|
|
|
let linreg = intercept + slope * (length as f64 - 1.0 - offset as f64);
|
|
lr_data.lr_value = linreg;
|
|
lr_data.close_time = window.last().unwrap().close_time;
|
|
lr_data_vec.push(lr_data.clone());
|
|
}
|
|
let mut lr_data_wrapper_lock = lr_data_wrapper_arc_c.lock().await;
|
|
lr_data_wrapper_lock.insert(symbol_c, lr_data_vec.clone());
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
try_join_all(task_vec).await?;
|
|
let a = lr_data_wrapper_arc.lock().await.to_owned();
|
|
Ok(a)
|
|
}
|